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stressed by a perpendicular electric field and attached (by sur-
face tension) to a rigid circular wall are described in terms of
a set of normal modes which satisfy four boundary conditions. The
interface can be unstable either because of gravity (a heavy fluid
on top of a light fluid) or because of the electric field. The
experimental eigenfrequencies, eigenfunctions and conditions for
instability are compared to the theory. These modes are then
used to describe the dynamics when the interface displacement is
detected and a proportionate potential is fed back to the seg-
mented electrode which imposed the quiescent electric field.
Electronic means for detecting interface disturbances are des-
cribed together with the relationship between the sampling scheme
and possible overstability. A comparison of theory and experi-
ment is made for the eigenfrequencies with feedback, and condi-

tions for significant improvement in stability are given.
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by
James R. Melcher and Everett Paul Warren

Department of Electrical Engineering
Massachusetts Institute of Technology
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I. Introduction

The instability of the equilibrium formed when a heavy fluid
is supported through hydrostatic pressure by a light fluid charac-
terizes a variety of physical situations. Hence, this Rayleigh-

Taylor type of instability appears in the literature of not only

(1) (2) (3)

, but in that of hydromagnetics , plasma dynamics

(4)

hydrodynamics
and electrohydrodynamics as well. TIn this work, the instability
is often found to have disastrous effects. The obvious example is
the instability of magnetic containment schemes. An analogous but
even more severe problem exists with equilibria, which use electric
fields to levitate, confine or orient liquids (which can be of
arbitrary conductivity). This problem is the motivation for the
work presented in the following sections, which first theoretically
and experimentally explores the details of a potentially unstable
electrohydrodynamic equilibrium, and then shows how external active
circuits can be coupled to the continuum to provide a feedback,
which stabilizes what would otherwise be an unstable situation.

The case considered offers the ooportunity to make a careful com-

parison of theory and experiment.

Fluids form a plane interface of radius R, as shown in Figure 1.



They are confined by rigid walls from above and below and at the
radius R. The interface has a surface tension T, and is attached
to the sharp edge of the wall at r = R. Now, if the density Py

of the upper fluid is greater than the density Py of the lower
fluid, the top-heavy equilibrium may be unstable because of the
gravitational acceleration g. The classic experiment of Duprez(s)
was devoted to determining the stabilizing effect of the attached
interface. Both the continuity requirements of the rigid walls and
the attached interface must be included to understand the effects

of concern here.

It is assumed that the lower fluid is highly conducting (for
example, water) while the upper fluid is insulating (air or oil).
Then a potential difference is applied between the interface and
the upper electrode. The resulting dynamics have been studied for

the unbounded interface(6’7’8)

9)

, and with simple effects from boun-
daries The potential V tends to produce an unstable equili-
brium. Hence, if the equilibrium is unstable to begin with, the
addition of the potential only makes matters worse. However, an
additional potential v(r,8,t) may be applied over the surface of

the electrode, and this potential made proportional to interface
deflections. Then, an upward deflection of the interface is attended
by a decrease, rather than an increase in the electric surface
traction, and the electric field has the effect of stabilizing

the equilibrium. In practice, it may in addition support the

fluid.

The control of a continuum requires a feedback, which is
dependent on both space and time. Practically, the interface
deflections can only be spacially sampled, and a finite number

of sensing signals used to approximate the potential v(r,0,t).




This is the essential limitation on the use of feedback in sta-

bilizing continua, and has been the subject of previous work relat-
(10,11)

(14)

ing to electromechanical instability, as well as to the

(12,13)

control of chemical and nuclear reactors.

In Section II, a simple model is derived to account for effects
from the boundary conditions and the electric field. The normal
modes of the interface, with the electrode at a constant potential
V are described in Section III, together with experiments concern-
ing the eigenfrequencies, eigenmodes and conditions for instability.
These modes are then used in Section IV to include the effect of
a feedback derived by averaging the interface deflections over
four sections of the surface and feeding back proportionate ampli-
fied signals to four segmented electrodes above the interface.

The modal theory is easily adapted to other feedback schemes,
while the experimental apparatus used to sense the deflections and
produce the feedback signals meets the requirements for more prac-

tical situations.




IT. Equation of Motion

The electromechanical interaction occurs only at the inter-

face, and hence, we can write the bulk equations for the fluid
as,

(1)

(2)

where v and p are the fluid velocity and pressure respectively
and g is the gravitational acceleration. We have dropped terms

from Equation (1) not consistent with a linearized analysis.

The essence of the long-wave model is in the statements that
the fluid velocities transverse to the z axis are independent of
z and that the fluid acceleration in the z direction can be

ignored to make the pressure essentially hydrostatic in its z

dependence.

P = -p8z + Tr(rygat) (3)

The conservation of mass condition (Equation 2) is then used to
compute the z velocity. Solutions above and below the interface
are distinguished by recognizing that in the upper fluid,

v3(r,0,u,t) = 0 while in the lower fluid vﬁ(r,e,-z,t) = 0. Hence,

vu,= —(z-u)V-\-lu
z (4)
vﬁ = -(z+e)v.§e

where v, v" and Gﬂ only depend on (r,8,t)



The divergence of the difference between Equation (1)

evaluated above and below the interface is

) u-u £-10 2, u /

S_ g. - + - =

St Y (p v pv) +Vi(r ') =0 (5)
This manipulation is performed because the difference - Wg is

determined by the boundary condition that the interface be in
force equilibrium, i.e.

2 2
f 4 2
Ul gE(pu _ pﬂ) + TVOE + lev _eVv . €V3 ¢

2 2 2

u u u (6)
where T is the surface tension and € is the permittivity of the
upper fluid. Equation (6) requires that the difference between
the fluid pressure above and below the interface is due to curva-

ture effects from the surface tension and due to the electric
traction.

The surface velocity d¢/0t = vz(z =0) = vﬁ (z = 0). Hence,
substitution from Equations (4) into the first term of Equation
(5), together with a substitution for vu - vg (given by Equation
(6) ) in the second term of Equation (5) gives

2

. e ; + V4€ _ szﬁ _ sg Vzv -0
3t u T

(7)
where we have defined the parameters,

T

3
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This is the required equation of motion. If the potential v on

the upper electrode is independent of space and time, Equation (7)
provides a description of the long-wave motions of the interface,
with the effects of gravity and quiescent electric field (G), as
well as surface tension, included. Feedback to the upper electrode
will be a rather complicated function of the surface deflection £.
To understand motions of the interface in the presence of feedback,
it is first necessary to form a complete picture of the "open loop"
dynamics. Hence, Section III is devoted to the electrohydrodynamics
without feedback, and the results of that section are then used in

Section IV where the feedback problem is undertaken.




IIT.Electrohydrodynamics Without Feedback

A. Eigenmodes

There is little work in the classical literature that con-
siders the dynamics of fluids with free surfaces confined in
three dimensions with the effect of surface tension included.
Experiments, such asthat of Duprez(s), that demonstrate the effect
of boundaries on the conditions for impending Rayleigh-Tayior insta-
bility, intrinsically depend on the 'static'" nature of the insta-
bility. That is, the analysis assumes that instability does not
depend on inertial effects, and experiments as well as theories,
which ignore the transverse boundaries support this conjecture.
As will be shown here, this is fortuitous, in that such a procedure
ignores a class of modes which can be unstable. Moreover, dynami-
cal effects are extremely important if the eigenmodes are to be
understood under any conditions other than those for impending
instability. In the presence of an active boundary, the system

is likely to be overstable, and dynamical considerations are essen-

tial.

The ordinary gravity-wave resonator can be understood by sim-
ply superimposing solutions which are periodic in space, to satisfy
boundary conditions. This is an adequate procedure when there is
only one pair of boundary conditions to be satisfied. Additional
boundary conditions arise when a fluid resonator has sufficiently
small dimensions to make the effect of surface tension significant.
In the experiments described here, the surface tension fixes the
surface at r = R, where a rigid wall also requires that the radial
velocity be zero. It is this second condition which can be ignored
for some modes at the point of impending instability, if the prin-
ciple of exchange of stabilities holds. Here, this principle is

not appropriate, and hence one boundary condition is




0]

while, from the radial component of Equation (5) (before the

0
R
(8)

A4

divergence is taken) and from Equation (6), the condition that

vr(r = R) = 0 can be written

S fw?-oe -] -0
or T.‘12 =R
“ (9)
With G = 0 and v = 0, Equation (7) has the same form as
found in analyzing transverse vibrations of a thin plate.(ls) The
second order term introduced with G complicates matters somewhat,
but more important, boundary conditions (8) and (9) do not lead

to modes which satisfy the usual orthogonality conditions.

Solutions have the form ¢ = Re g(r) exp j(wt-m@), where
it follows from Equation (7) that (for v = 0),

@2 - ad®) @2+8Y) t@) =0

(10)
2 1 m2 )
5 = g L EE =9
Y - DrD 3 ) ; D= -
r
with a and B related to the frequency w by
o = G + V6% + sat)/2
(11)
82 - (-G + G + 4w2q )/2




Hence, the four solutions are a superposition of the pairs of
solutions provided by the Bessel's equations in brackets (Equation
10). One of each of these pairs of solutions is singular at the

origin, and hence the required solution is

A Jm(jamnr) Jm(anr)
E =TT T oy T T (8 RY
mn Jm(JamnR) Jm(anR) (12)

where the linear combination is taken to satisfy Equation (8).
To satisfy the condition of Equation (9) (with v = 0), a and B are

related by the eigenvalue equation

| 1_(3a_R) J_(B_R)
Gon®) 776G 0 - Cu® 7768
m mm m mn

(13)

which has been simplified by using Equations (10) and (11).

Equation (11) shows that in addition a and an are related by

2

2 _ 2
(amnR) = GR™ + (BmmR)

(14)

Equations (13) and (14) may be solved for the eigenvalues an, and

a normalized eigenfrequency squared_()? = wan4 is then given by

1~12n - (_R)° [(ﬁmnR)z + GRz]
m (15)
These eigenfrequencies (m,n) are shown as a function of
GR2 in Figure 2. The lowest radial mode is given when n = 1. The

parameter GR2 can be varied by changing the quiescent electric



-10-

field V/u. For example, with the heavier fluid below the inter-
face and no electric field, GR2 will be positive. Then raising
the elecfric field reduces GRZ, and from Figure 2, reduces each
of the eigenfrequencies. Eventually, each of the eigenfrequencies
squared becomes negative, and the mode becomes unstable. The

(1,1) mode is the first to become unstable.

Physically, large positive valueg of GR2 imply that the effect
of the gravitational field on the dynamics is much greater than
that of the surface tension. In the limit where GR2—>°o , GR—» 00
and Equation (13) reduces to J&(anR) = 0. Except in a region
very near the edge (r = R), the eigenfunctions are essentially
Bessel's functions of real argument, with zero slope at r = R.

(16)

This is the situation of a gravity wave resonator with a sur-

face tension "boundary layer" near the walls. The (1,1) eigenmode

is shown in Figure 3. As GR2 is reduced, the point of zero slope

on the lowest eigenfunction (shown in Figure 3), moves inward

from the resonator boundaries but remains skewed somewhat to the

outside of the half-radius. Instability impends when GR2 is

sufficiently negative to make w = 0, or when (aR)%——»-O and

(BR)Z——*- GR2 (Equations 11). Then Equation (13) (for modes m # 0)
reduces to Jm(anR) = 0 and the eigenfunctions a;e Bessel'; func- )
tions having zeros at r = R. The cases where GR™—»® , GR™ 2 0 and GR" €0

(impending instability) are compared in Figure 3.

The m = 0 modes differ from the others because they do not
automatically satisfy the condition that the total mass within
the resonator be conserved. At low values of GRz(even the point
of impending instability) both boundary conditions influence the
modes. This accounts for the peculiar appearance of the m = 0

eigenfrequency shown in Figure 2.
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In the extreme of large GRZ, the boundary condition imposed
by the rigid wail at r = R on the radial velocity is essential,
with the effect of the attached interface insignificant, By con-
trast, at the point of impending instability the attached inter-
face imposes the significant condition and the rigid\wall at r = R
is unimportant, unless m = 0. This is why only the former boundary
condiition need be congidered in predicting the usual forms of
Rayleigh-Taylor instability (where the principle of exchange of
stabilities is valid), so long as the first mode to become unsta-

t

ble happens to be with m # 0.

The modes described here will be used in Section IV to expand
the potential v(r,8,t). There it will be convenient to use modes
v _(r), defined so that

mn

rR%25 = ?
mn

ma (16)

It follows from Equation (10) that

v‘G - GVZG = wzan
where, from Equation (16)
[?23 '] _g~ 0
mj| r = (18)

The second boundary condition follows from Equations (9), (16),

and (17), since

D@2 - &)9%% = a2 aD% =0
m = mn

(19)
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or

) 2
r=R (20)

A
This boundary condition also insures that the functions £

satisfy'the boundary condition (9) even when v = v(r,9,t), so

long as v is represented by a summation of the modes Gmn’

In the appendix, it is shown that these modes Gmn satisfy the

orthogonality condition.

. e 3
S r(DV DG+ ————7——2-)dr =0, n#p
o mn  mp .

(21)

which is more complicated than usual because the boundary conditions

(17)

do not appear in the usual convenient combination.

B. Experiments

Before introducing the complication of feedback, the physical
significance of the electrohydrodynamic model is explored experi-
mentally. The long-wave model depends for its validity on there
being surface deflections with 'wave-<lengths' long compared to
the depths/ and u. For this reason, the eigenmodes become more
and more subject to question as the mode numbers are increased.
Fortunately, it is the lowest mode (1,1) which is most critical

in terms of instability, and hence, is of most concern.

The eigenfrequency'()11 appears as the lowest resonant fre-
quency, when the fluid resonator is subjected to vibrations in
the plane of the interface. In this experiment, the surface deflec-
tions are measured with a capacitance probe positioned just above
the interface. The probe uses a 72 mcéeguned circuit in the same

way as will be described for feedback sensing purposes in the
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next section. However, here the probe surface is circular and is
us 0.16R, This makes it possible to both vary the vibra-

tion frequency to find the maximum deflection frequencies (eigen-
frequencies), and to measure the spacial dependence of the indivi-

dual modes.

The eigenfrequency of the lowest mode is shown as a function

P . 2
of GR in Figure 4. Herc, the voltage was raised to decrease GR

Qe

and the resulting data can be compared to the plot of theoretical
frequencies (predicted in Section IITA). As expected, the higher
eigenfrequencies are predicted with increasing inaccuracy. Experi-
mental and theoretical eigenfrequencies are compared (with no
applied voltage) in Table I for the resonator used to obtain the

frequency shifts of Figure 4.
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The capacitance probe makes it possible to map the interface
deflections and identify the eigemmodes. The radial variation of
the (1,1) mode is compared to the theoretical eigenmode in Figure 5.
The probe measures a deflection averaged over the relative length
shown in this figure.

The conditions for instability have been measured for the

(6’7’8). The effect of the boundaries can be

infinite interface.
included at the point of impending instability without recourse to
the long-wave model, if (as pointed out in Section IITA) the inter-
face is assumed to attach to the edges and those modes which are
affected by conservation of mass are ignored. For example, a square

(9)

resonator will be unstable for V larger than

2
vV = J%I [(ku)2 + ( E%H— ) ] / (ku) coth(ku)

(22)

where k is allowed to be

k =1 Vnz + m2/L,n =1,2,3..., m=2,4,6...
(23)

and has that value in Equation (22) which gives the least voltage
V for instability.

The voltage for instability, as a function of interface-
electrode spacing u, is shown in Figure 6. Here, the liquid is water,
and sulfurhexaflouride (a gas) is used to prevent electrical preak-
down. It is clear from the data and the theoretical curves predicted
by Equation (22) that the boundaries have a significant effect of

the conditions for instability.
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IV. Electrohydrodynamics With Feedback

The potential v(r,08,t) is now used to produc; a stabilizing
feedback force on the interface. The expériment is as shown in
Figure 7, where the upper electrode is shown segmented into four
equi-area pies. Each pie is connected to a feedback loop, as shown.
The capacitance between a given electrode and thg interface is part
of a tank circuit isolated by a capacitor and tuned near resounance
for a 72 Mc/sec driving signal. Hence, the spacial average (over
one pie) of the interface deflection shifts the resonant frequency,
with a proportionate change in the operating point of the tube.

As a result, a demodulated signal proportional to the average deflec-
tion of the interface appears across the cathode resistor. This
> _ 10’ V/m) and fed back through a low

pass filter to the segment which originated the signal. Each

signal is amplified (to 10

segment has a separate feedback loop, with the carrier frequencies
for the sensing circuits differing by about 1 Mc/sec to insure

isolation between loops.
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The eigenmodes developed in Section IIIA, and experimentally
studied in Section IIIB, are coupled by the feedback, with a result-
ing shift in the eigenfrequencies. The new eigenmodes, with

coupling to the active boundary at z = u, will be approximated by

' o
® A — —_ . (24)
5 ¢ _(r) ( - . T jot
0 n=1 ™ — pSin me + mn €08 ml)e

8

£ = Re
m

™

where gmn(r) is given by Equation (12).
Since each term in the expansion of the coupled eigenmode
must satisfy Equation (7) and the boundary conditions of Equations

(8) and (9), the electrode potential is expanded as

o .
¥ (©)(V  sin me + ve cos mQ)eJ(Dt
mn mn mn

(25)

N .
where the modes an are related to gmn by Equation (16) and are

Jm(jamnr) . Jm(anr)
(Ramn)ZJm(jamnR) (Ran)ZJm(anR)

v =
mn

(26)

as can be varified by using the differential equations (10) satis-
i ' : des Vv th 1 i
fied by Jm(Jamnr) and Jm(anr) The modes v, are orthogonal in
the sense of Equation (21), and because they satisfy Equation (20),
they may be used to expand v(r,8,t) without violating Equation (9)
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~
as a boundary condition on the modes emn'

Because the feedback voltage on the i'th electrode is pro-
portional to the spacial average of the surface deflection below

the i'th electrode,

{'iTT/Z
v, (¢ =i“—2 J Erdrde
TR Jod (i 1yr/2

(27)
Here, it is assumed that there are four electrode segments,
arranged as shown in Figure 8, with 8 = 0 between two of the

segments. The average deflection is amplified by the gain A,

which will be taken as independent of frequency.

The substitution of £ (Equation(24)), into Equation (27) gives

vi(t) = ReGiert
' (28)
where
A 4tA o @ g f _°
v, = — 3 > —) _ [ cos mr(i-1) - cos mvi]
i T m {_— —_
m=0 n=1 2 . 2
mn
__e
+ [sin mri - sin mrr(i—l}]
mn L 2 ’ 2
and(x = r/R)
1
A
a .~ x&mn(x)dx
o)

. . . o
These electrod potentials determine the potential amplitudes an
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—o
and V;n of Equation (25) in terms of the deflection amplitudes;:_lwﬂ
—e
- . Here, the integral condition of Equation (21) is useful.
T mn
That is, if Equation (25) is operated on first by (Sln po )(DG\S)rD
cos p® P
and then by ( sin p@ )G mi and the sum is taken of the result-
me O ps+2
ARV tl\l -
ing equations, followed by an integration over the electrode sur-
face, the orthogonality condition of Equation (21) reduces the
resulting expression to,
o A .
\Y f 4 v, cos p(i-1)r - cos pir
PS| . RS s _1 2 2
Tb . P
ve ps 1=l sin pir i-1)r
ps 2 sin 2
(29)
where (x = r/R)
' n 2 . p% A 2
b = X [DV (x)] +5 v (x)] dx
ps ps x ps
o
S P_ 35 (x) dx
ps X ps
Now, the vis have been found as a function of the amplitudes T

(Equation (28))and hence, Equation (29) shows the effect of the
deflection modes on the electrode potential modes. The equation

of motion (Equation 7) provides the inverse effect of the elec-
trode modes on the deflection modes. Substitution of Equations (24)

and (25) into Equation (7) shows that
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- 2 o
2 2 —0© VR [v ]
ﬂ-m‘n -Q ) - mn - 2 mn
u T e
[¥on
—_—e (30)
—mn

where the fﬁlnmfs are the eigenfrequencies without feedback (Sec-

tion IIT) and () is the eigenfrequency wiiti feedback. With £

TS & A
VWL LLL “

~
o

back, Equations (30) and (29) (written using Gi from Equation (28) )

must be simultaneously satisfied. Hence, substitution for v

and
V:n in Equation (30) gives
—0 [ ___ O
~—mn 2 2 Mfrnn @ » 2 ;’Dq O'mpw
Qz -1 -=—% ¥ -k ~ -0
mn = = p
—e mmT b p=0 gq=1 —
_ mn — Ein
—mn —pq P
(31)
where
4€VAR2
M=
uT
&T}Z _ mzRan
4 _ -
0 < & [eos BUSLE _ coomir |[eog prlD _ o, 1
mp 2 2 2 2
i=1
4 r (i-1) -
E%p =5 l sin ST _ gjp DT }[sin —%— - sin > 1]
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It is clear from Equation 31 that in the absence of feed-

back (M = 0) the amplitudes - o individually represent solutions
having frequencies§15=(1rmllnn:that with feedback these ampli-

tudes are coupled and the frequencies are therefore changed. To
calculate the éoupled frequencies, the surface deflections are
approximated by a finite number of amplitudes i.e. p = 0,1,2...1,

g =1,23..,.j. Then Equation (31) can be written for m = 0, 1...1i,
n=12,...5. and this gives jxi equations which are homogeneous

in the — 's The compatibility of these equations is a poly-

mn
. . 2 . .
nomial in { } , and hence can be solved for the eigenfrequencies.

Most of the spacial variation introduced by the feedback
occurs in the azimuthal direction, so that more azimuthal than
radial modes are required to adequately describe the dynamics.(lg)
In the work which follows, the first six (odd and even) azimuthal
modes and the first two radial modes are considered. For the
four segment situation considered here, the m = 0 mode is not
revised by the feedback (a_on = 0) and therefore, only the n = 1

radial modes are involved in the coupling.
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The eigenfrequencies are shown in Figure 9, as a function of
GR2, in the case where the feedback gain A is such that M = 103.
These frequencies can be compared to those shown in Figure 2,
where the feedback gain A = 0. As already observed the (0,1) mode
" remains uneffected. The essential consequence of the feedback is
an increase in the frequency of the (1,1) mode, so that the point
of impending instability (as the voltage is raised so that GR2 is
made more negative) is determined by the (0,1) mode rather than the
(1,1) mode. At lesser values of M, the value of GR2 where () —»0 is
shifted to the left, but not so far as shown in Figure 9. Heﬁce,
the conditions for stability of all modes can be represented as
shown in Figure 10. At low values of the gain M, instability first
occurs in the coupled (1,1) and (1,3) modes. In this case the
voltage for instability can be increased (GR2 decreased) by increa-
sing the gain. Finally, the (0,1) mode is the first to become unsta-
ble and there is no advantage in further increasing the gain.

In the range where the (1,1) mode is the first to become unsta-
ble, without feedback, a theory based on the coupling of the (1,1)
and (1,3) modes gives the line of marginal stability (shown in

Figure 10) as

- a% + (2 u )
Moo m-11 . "31"A t11 133 7 2R3 My

(32)
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where_f)_aB is the eigenfrequency of the (2,B) mode without feed-
_ 2

back and HaB = -4fa1a61/a8n b1

Overstability has been found both experimentally and theoretically

(10)

the investigations described in this section did not uncover an

in situations similar to the one described here. However,

‘V'OQ|11
- -

o
Q
(s}

neino
using

an average
of the surface deflection (Equation 27) to derive the feedback
signal. By contrast, the deflections could be sampled at discrete
positions to provide the sensing signals v, Although this can be
advantageous in dealing with static instability (one has thé
liberty of choosing the sampling point within a given area) it has
proved to be the cause of overstability in previous work.(lo’ll)
Probably, there would be some increase in the stable region
of Figure 9 if the feedback (still using four stations) incorporated
one circular electrode at the center and three equi-area segments
around the periphery. However, the intent here is to demonstrate

the basic considerations involved, and not to optimize the system.

B. The Experiment With Feedback

The feedback is introduced to alter the natural frequencies
of the fluid inter
with the type of feedback used here, these frequencies are either
real, or purely imagihary. Hence, in the stable regime, a sinu-
soidal vibration of the resonantor gives a response on the feed-
back loops with resonances at the eigenfrequencies. This is a
convenient way to determine the effect of the feedback. With the
voltage V = 0, the loop gains are adjusted to some gain A. Then,

the resonance frequency of a given mode (the natural frequency) is
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followed as the voltage is increased. This makes it possible to
shifts as a function of the applied voltage V. Data taken by
measuring the (1,1) resonance as a function of applied voltage V
are shown in Figure 11. With no gain (A =0) the frequency squared
decreases monitonically toward zero, where instability impends.
With a feedback gain A = A' the frequency first4increases, and
then decreases as the destabilizing effect of the voltage (pro-
portional to V2) overtakes the stabilizing effect of the feed-
back (proportional to V). With A = 2A', the increase in frequency
is still larger, but the peak still occurs at essentially the

same voltage. The solid curves shown in Figure 11 are predicted
using a gain A' = 2.05 x 106 volts/meter. All of the theoretical
curves have been displaced downward by f2 = 1.7 to suppress the
(8%) constant error in the predicted natural frequency (apparent
in Figure 4). The closed loop measurement of frequency shift has
been found to be the most practical technique for establishing the
effective gain A. (In the experiment, there were four loops, each
having three d-c amplifiers, an r-f oscillator and two r-f ampli-
fiers so that establishing equal constant gains in each loop was
difficult.)

An "open-loop'" measurement of the high-voltage amplifier
response to a known electrode potential distribution also provides
a direct measurement of the gain A. That is, a perturbation
potential v4 on electrodes (1) and (4) in Figure (8), with no
perturbation potential on electrodes (2) and (3) establishes (from
Equation (29)) that

vgs =0
(33)



-24-

f v
e s T 3
o B (ain B - ain 2

(34)

Here, the low frequency feedback from the high voltage amplifier
0 d

has been disconnected. Heuce, Equation {30) can be used

}=

rectlv
= =g

to compute the resulting deflection amplitudes.

o
- =0
—mn . (35)
e
- 2 e 2 2
- = gVR an/u Tiﬂlmn (36)
—mn

Of course, it is assumed that the resulting deflections are static

2 . . .
so that iﬁl = 0, and this means that the measurement is taken with

2
GR™ sufficiently large to insure stability. The response of the
high voltage amplifier to this deflection is Equation (28), which
by virtue of Equations (34) and (36) shows that '

A= (v,) ' /v ,C.
(vl)responselvdbl
(37)
where
4€VR2 ® ® amnfmn m7 . 3mr imyr (i-Dmr
) b ) (sin —5 - sin _E—) (sin i sin 2

= = 2
m=0 n=
TuT (m(lmn) bmn

Measurement of the gain, using open loop measurements of A

and computed calibration constants Ci’ resulted in a value of A'

)
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about 157 higher than used for the theoretical curves of Figure 11.
This is well within the experimental errors involved in the "open-
loop" measurements, but is a significant error when viewed in

terms of the 'closed-loop'" measurements.

V. Summarvy and Conclusions

The objective of this work has been to demonstrate the con-
trol of a fluid instability by coupling to an active electronic
network. There are two essential considerations in this approach to
the stability problem. First a means must be provided to sense
the appropriate motions of the fluid without interfering with the

equilibrium "flow."

Signals derived from this sensing signal
(which is in general both a function of space and time) must in
turn be used to force the fluid motions, and this means that an
externally controlled fluid force must be available. In the work
undertaken here a solution to each of these problems has been
illustrated, using as an example the stabilization of the Rayleigh-
Taylor type surface instability. Radio-frequency capacitance
probes were used to sense motions of the interface with a negligible
influence on the motions themselves. An electric field then pro-
vided a natural means of feeding back a forcing function to the
interface in proportion to the sensing signal.

Sections II and III1 were devoted to establishing a relatively
simple but meaningful quasi-two-dimensional model for the field-
coupled surface instability. Since the effect of the feedback was
pictured in terms of a coupling between the normal modes without

feedback, it was necessary to include the effects of radial boun-

dary conditions. This made it possible to correlate theory with
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experiments which demonstrated the eigenmode shape, the effect of
an equilibrium electric field on the most critical eigenfrequency,
and the effect on conditions for instability of boundaries which
both confined the fluid and constrained the motions of the inter-
face. Section IV then demonstrated how these eigenmodes were
coupled by the feedback to increase the stable regime. The
theoretical dependence of the most critical eigenfrequency on the
feedback gain was finally shown experimentally. Emphasis has
been placed on the behaviour of the eigenmodes rather than the

regime of stability. 1In fact, from Figure 10

A2 J_g(pz-pu)RilT] + 26
[g(pe-pu)R T] + 14.5 (38)

where A is the ratio of the largest V consistent with stability
with feedback to the largest possible V consistent with stability
without feedback. That is 132 is the largest possible factor of
improvement in the electric pressure consistent with stability.
For the air-water resonator having the dimensions used in this
work, g(pg—pu)Rz/T = 49.1 and C? = 1.18. Either a smaller
resonator or a two liquid system would be required to demonstrate
a larger improvement in the electric pressure.

In a practical situation, the equilibrium electric field
can be used to levitate or orient an isolated volume of fluid,
with the feedback used to insure stability. The essence of the
sensing and driving schemes described here are directly applicable
to this problem, and it is in this context that-work on the

regime for stability will be reported.
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This work has considered the feedback control of an absolute
instability. Closely related work concerning the use of similar
techniques to control a convective instability (or amplifying wave)

will be reported elsewhere.
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Appendix

To show that modes which satisfy Equation (17) and boundary
conditions (18) and (20) are orthogonal in the sense of Equation
(21), Equation (17) is used to write

2 2

R m
nw (" (Dv__Dv + S5 V_V Ydr — v
' mn r mii P > mn mp -  mnp

(o]

R 4 2 w4 2
= g [D(V'v_-GV°v_)rDv__ + = (Vv _- GV'v_)v | dr
o mn mn mp r mn mn’  mp

Integrating the first term on the right by parts and recombining

the remaining integrand gives,

R R
Y = [r(Vav - GV2v )Dv__ - gr (Vav Vzv - GVzv Vzv )dr
mnp mn mn’ " mp mn  mp mn  mp
o)

The first term is zero because of Equation (20), while the first
term in the integrand can be expanded and partly integrated by

parts to obtain,

R
2 2
14 = - [r(DV vmn)v v ]

Py

R 2 m’ 2 2
+ Sr [DV vmnDV vmp + ( —§-+ G)V anv vmp]-dr
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Appendix

Again the first term vanishes by virtue of Equation (18). Then,

the difference v -y is zero (the remaining integrals are
mnp ' mpn

symmetrical in n and p) and the desired orthogonality condition

(Equation 21) follows for o # Op’
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Table I. Comparison of theoretical and experimental eigenfrequen-

cies of higher order modes showing the increasing disparity aris-

ing [rom the failure of the long-wave model.

tor are given in Figure 4.

Data for the resona-

(m,n) fon (cps) f (cps)
theoretical eggerimental

1,1 3.36 3.10

0,1 7.57 6.40

1,2 11.1 9.1

0,2 16.5 12.9

1,3 24.0 15.0
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Figure 1. Cross-sectional and top view of electrohydrodynamic reso-
nator. The interface between two liquids is attached at r = R to a
rigid wall. The lower liquid is highly conducting and bounded from
below by a rigid highly conducting plate, while the upper liquid

is insulating and bounded by a rigid surface at the potential
v(r,o,t) - V.

Figure 2. Eigenfrequencies in the absence of feedback for the modes
(m,n). Raising the potential V leads to a decrease in GR2 which
reduces all of the frequencies to the point where they become ima-

ginary and instability impends.

Figure 3. The surface deflection in the (1,1) mode. When GR2 is
very large the eigenfunction approaches that of an ordinary gravity
wave. At the point of impending instability (GR2——*-O) inertial
effects are unimportant and the mode peaks at about a half radius.
For an air-water interface and a radius R of about 2 cm, GR2 is
about 50, and the deflections peak midway between the half radius

and the outer boundary.

Figure 4. Experimentally measured eigenfrequencies (0) as a func-
tion of GR2 (varied by changing the applied voltage V). The solid
line is the theoretical result of Section IILIA, R = 1.9cm, u = 0.785 mm,

? = 3 mm and the fluids are water and air.

Figure 5. Comparison of theoretical and experimental (1,1) mode
eigenfunctions. The experimentally determined deflections repre-
sent averages over approximately the probe area. The relative size

of the probe is shown.

Figure 6. Voltage V for instability as a function of the electrode

interface spacing u. The resonator is square, and the three theore-
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FIGURE CAPTIONS

tical curves are predicted by Equation (22).

Figure 7. Fluid surface coupled to feedback structure composed of
four segments. The sensing and driving circuit for one of the seg-

2 e~

ments is snown.

Figure 8. Top view of electrode at z = u, showing the four seg-
ments with connections to the four feedback loops.

Figure 9. Lowest eigenfrequencies with feedback. Here, M = 103

which characterizes the magnitude of the feedback gain used in experi-
ments described in Section IVB. The curves are based on the coupl-
ing of two modes, and differ very little from those predicted using

the coupling of three modes; (1,1),(3,1) and (5,1).

Figure 10. Regime of stability as a function of the feedback M. For
small values of M there is an improvement in the electric pressure
consistent with stability. Eventually, modes that are uneffected

by the feedback are unstable, and further increases in M provide

no improvement in the regime of stability.

Figure 11. The lowest eigenfrequency squared as a function of applied
voltage V. The gain A' = 2.05 x 10° v/m. The solid lines are
based on a theory using the coupling of the (1,1), (3,1) and (5,1)

modes.
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Figure 1. Cross-sectional and top view of electrohydrodynamic reso-
nator. The interface between two liquids is attached at r = R. to a
rigid wall. The lower liquid is highly conducting and bounded from
below by a rigid highly conducting plate, while the upper liquid

is insulating and bounded by a rigid surface at the potential
v(r,8,t) - V.



-30 -20 -0 0 10 20 30 40 50
GR2 — :

Figure 2. Eigenfrequencies in the absence of feedback for the modes

(m,n). Raising the potential V leads to a decrease in GR2 which

reduces all of the frequencies to the point where they become ima-

ginary and instability impends.
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Figure 6. Voltage V for instability as a function of the electrode
interface spacing u. The resonator is square, and the three theore-

+1lcal curves are predicted by Equation (22).
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Figure 7. Fluid surface coupled to feedback structure composed of
four segments. The sensing and driving circuit for one of the seg-

ments is shown.
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Figure 8. Top view of electrode at z = u, showing the four seg-

ments with connections to the four feedback loops.
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consistent with stability. Eventually, modes that are uneffected
by the feedback are unstable, and further increases in M provide

no improvement in the regime of stability.
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Figure 11. The lowest eigenfrequency squared as a function of applied
voltage V. The gain A' = 2.05 x 106 v/m. The solid lines are
based on a theory using the coupling of the (1,1), (3,1) and (5,1)

modes.



